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PREFACE

The work described in this report was performed as part of a
project at the Transportation Systems Center on the analysis and
control of traffic flow. The project is one component of TARP —
the Transportation Advanced Research Program.

The overall Transportation Advanced Research Program is
sponsored by the U.S. Department of Transportation through the
Office of the Secretary for the exploration of the application of
advanced technology to large-scale transportation systems.
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1. INTRODUCTION

There is a continuing interest in the design of a simple and
adequate formula describing the basic characteristics of traffic
flow on freeways. The formula, complemented by the dimensional
relation

flow = density x speed,

describes the relation that necessarily obtains between any chosen
pair of the three basic quantities.

Many forms have been proposed in the literature of which
mention will be made of a representative selection. The relations
of Pipes (1953) and Gazis et al. (1959) were each derived from a
car-following model. The latter, involving a logarithmic form of
the speed-density relation, when combined with the exponential
form proposed by Underwood (1961) yields the composite form of
Edic (1961). As examples of results derived from fluid-analogy
mechanical models we note the work of Greenberg (1959) and Drew
(1965, 1968). The formulas derived by Haight (1958, 1960, 1963)
were based on statistical formulations; the relations proposed by
Greenshields (1934) and by Guerin and Palmer (1968) were based on
direct empirical considerations.

Certain features of the relation have been discussed in a
previous report (O'Mathuna and Haim, 1973) in which the approach is
guided by an emphasis on the parameter determination aspects of the
problem. There was also included an alternate mathematical descrip-
tion of the fundamental relation which avoided some of the more
obvious drawbacks of previously derived forms. It was further
indicated how the proposed formula could be generalized to admit
further degrees of freedom, thereby allowing the added flexiblilty
necessary for the identification and determination of the appro-
priate characteristic parameters. The present work is concerned
with the further exploration of these features of the problen.



We note that among the features to be described by the formula
are the following five terminal requirements:

1. A finite maximum mean-specd at zecro density
2. A zero mean-speed at jam density

3. A zero flow at zero density

4. A zero flow at jam density

5. The vanishing of the speed/density derivative in the limit
of zero density.

The physical necessity of the first four is clear: the fifth
requirement, reflecting the fact that on a nearly empty road the
mean-speed is unaffected by moderate changes in the density, has
been fully discussed by Haight (1963).

A further, physically necessary requirement does not seem to
have received its due attention in previous discussions: namely,
the requirement that the dimensionless form of the formula fit the
empirically determined curve in such a manner that the assignment
of appropriate values to the basic parameters (free-speed and jam-
density) implies realistic values for such derived quantities as '
capacity and capacity-speed. Also, the derived range of wave-
speeds should fall within realistic limits.

The satisfaction of these requirements, which is a principal
concern of the present work, can be most conveniently accomplished
through the perspective of a nondimensional formulation. It will
be shown how the logarithmic form of the speed-flow relation pre-
viously proposed can be extended in such a manner that the extra
degrees of freedom are adequate for fitting the formula to an
empirically determined curve, through the satisfaction of the
parametric requirements,



2. DIMENSIONAL SCALING AND THE CHARACTERISTIC RATIO

It is customary to let q denote the flow, while u and k
represent the corresponding mean-speed and density, respectively.
The dimensional relation then reads

q = ku, (2-1)
while the fundamental formula describes the relation subsisting
between two of the three quantities.

The maximum value of thc mean-speed, called the free-speed,
will be denoted by ug» and the maximum density or jam-density will
be denoted by k,. With these scale factors we define normalized
dimensionless vairables A and m by setting

k

L}
ot
*
>
o

<A <1 (2-2)

u = ugm, 0 <m«<1 (2-3)

Then if we introduce the dimensionless flow-variable ¢ by writing
q = keugo (2-4)
the dimensional relation (2-1) becomes
¢ = Am (2-5)

and the fundamental formula will relate two of the three quantities
¢, A, and m. The relation between either of the other pairs will
then follow from relation (2-5).

If we use the subscript c to denote the maximum values of the
flow variables q and ¢, namely, the values assumed at capacity
flow, wec sce from (2-4) that

U@ = k*“n e (2-6)

This suggests defining a characteristic highway ratio R by setting



_ qC ’ :
A T (2-7)

and equation (2-6) when written as
. =R (2-8)

may be read as a constraint on ¢.

It is therefore appropriate to inspect .the potential range of
values for the characteristic ratio R. First, we note that

1. The free-speed for highways normally lies in the 60 to
70 mph range, with perhaps a rising tendency to a bias
towards the lower half of the range.

2. The effective car length is generally taken in the 20 to
30 ft range so that the implied jam-density can. vary from
175 to 260 cars per mile; a value of 200 cars per mile
represents a typically acceptable figure for the jam-
density, corresponding to an effective car length of
26.4 ft.

3. The accepted value for per lane capacity flow is around
2,000 cars per hour; although no figure in excess of
2,200 cph has been observed, the reputed tendency of the
upper limit to rise is attributed to the constant improve-
ment in driver performance - equally reputed!

Combining the above ranges appropriately, we obtain the following
limits for the acceptable values of the characteristic ratio:

2000 2200
70x260 - R < §0x17% (2-9)

or, in decimal form:
.11 < R < .21

It is likely that most highways are characterized by values close
to the center of this range; accordingly, we shall take the value

R = .16 ; (2-10)



as typical; for a highway with a per-lane capacity of 2,000 cars
per hour, and with a mean free-speed of 63.5 mph, this would cor-
respond to a jam-density of approximately 200 cars per mile (the
exact value would by 197).

Finally, we introduce a normalized measure of the flow (the
standard flow/capacity ratio) by setting

(2-11)

ke
il
< |-9-

C

so that, in terms of the normalized variables the dimensional

relation (2-1), or its dimensionless form (2-5), reads
=1 O -
P ¢c Am R Anm (2-12)

which will be used in the construction of the normalized curves.



3, STRUCTURE OF THE CHARACTERISTIC RELATION

The most reliable data describe speed and flow character-
istics, and consequently, the most generally accepted character-
istic curves are those derived from such data - typified by the
speed-flow curves produced in the Highway Capacity Manual (1965).

It is therefore appropriate to consider the fundamental formula as
a speed-flow ralation in the form

¢ = ¢(m), (3-1)

and investigate how the function ¢ should be constructed so as to
meet the basic requirements and allow a fitting to the empirical
curves of the Highway Capacity Manual.

In the previous report (O'Mathuna and Haim, 1973) we have

shown that the basic logarithmic formula
dom) = - [(2-m) 1n (1-m)] (3-2)

meets the five terminal requirements and follows the general
pattern expected of the characteristic curve. However, some ex-
tension of the formula is necessary to admit the degrees of freedom
necessary for the satisfaction of the parametric requirements. It
was indicated in the previous report how this extension could be
effected; if the relation is taken in the form:

¢ (m) ¢q(m) £ (m)

fl

- [(1-m) 1n (1-m)] £(m) (3-3)

then the five terminal conditions are satisfied and the general
pattern of the characteristic curve is retained, if the multiplying
function f(m) satisfies the following conditions:

1. f(m) remains bounded, is strictly
positive and has non-positive
derivative on the interval (0, 1) (3-4)



2. f(m) satisfies the terminal conditions:

i. f(0) =1
ii. f(1) =a, o< a <1
iii, [f'(1)] < = (3-5)

The present investigation focuses on choosing an appropriate form
for the function f(m) and on the determination of the constants
appearing therein. The procedure will be to choose a form for f(m)
with the flexibility necessary to meet the parametric requirements;
when appropriatec values have thus been assigned to the constants
appearing in the function f, a straightforward inspection can check
that conditions (3-4) and (3-5) have been satisfied.

In order to gain some insight into the desired form for f with
the appropriate number of degrees of freedom, we note that besides
satisfying condition (2-8) it is also necessary ‘that the implied
value of the dimensionless velocity fit the value specified by the
data. Thus, if u. is the value of the mean-speed at the capacity
point and we set

_ C
mc = u—o- (3‘6)

then in order to fit the curve at the capacity point it is neces-
sary that

mem.=> P -0 (3-7)
%¢=¢C=R (3-8)

The simultaneous satisfaction of these conditions can be. achieved
with two disposable constants. Having thus nailed the curve at the
capacity point, it will be found that matching at one other inter-
mediate point will lead to an adequare fit over the entire range.
This further matching can be accomplished by means of one additional
disposable constant. The three constants together with the implicit
use of the parameter m. in general imply four degrees of freedom for
the function of f.



By taking the function f in the form:

f(m) = 1 - am - bme a(m-m.) . | . (3-9)

the constants a and b can be chosen to nail the capacity point,
while the exponent a can be chosen to achiecve a matching at a
suitably chosen intermediate point. That conditions (3-4) and
(3-5) are satisfied then follows from a straightforward verifica-

tion.

The next section will give the computational details for
fitting the formula to the characteristic curve of the Highway

Capacity Manual.



4. THE FUNDAMENTAL FORMULA

For the typical curves in the Highway Capacity Manual repro-
duced in Figure 1. we see that:

a. = 2000 cph, u, = 63.5 mph (4-1)

No value is specified for the jam-density or the effective car
length. We shall take the typical value of .16 for the character-
istic ratio which, as was noted following relation (2-9), is
consistent with a jam-density of approxiamtely 200 cars per mile.
Moreover, in the typical case illustrated in Figure 1, the capacity
speed appears as exactly half the free-speed so that conditions
(3-7) and (3-8) take the specific form:

m=m= % %Q = 0 (4-2)

% 6= 6. = .16 (4-3)
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for the fixing of the capacity point.

Introducing the form (3-9) for f(m) — with m = 1/2 —
into the characteristic relation (3-3) we obtain:

- a( -%_)
¢$(m) = -[}1-m) 1n (1ﬂnﬂ 1 - am - bme (4-4)

which yields the following form for the derivative:

1
. - m-3;
%% =[1 + 1n(1-.m)][1 - am - bme a( 2)]
), D
+ [(1-m) 1n (l—mi] a + be - abme (4-5)

For m = 1/2, the value of the derivative can be arranged to read:

d¢ - 1. 1 1
am I 17 1 - In2 - -Za 2‘b (1 - —2-(1.1112) (4-6)

so that taking

a = 2(1-1n2) . b(l-% aan) C(4-7)

ensures the satisfaction of (4-2). Next, we observe that, for the
value of the function ¢ at m = 1/2 we have, after some rearrange-
ment,

@) - Hn2) [1 - 3] (-8

so that for the satisfaction of (4-3) it suffices that

1 2 1
5 1n2 1 -7 ab|{ = .16. (4-9)
Noting that (ln2)2 = .48, it is clear that relation (4-9) simpli-
fies to:
_ 4 _
ab = z (4-10)

10



which, when used in relation (4-7), yields the relation between a
and b,

a=2-7%1n2 -b (4-11)

It remains to effect a calihration at a suitably chosen intermedi-
ate point; from inspection of the curves in Figure 1, it would
appear that a point with speed in the 40 to 50 mph range would be

appropriate. On the curve for the six-lane highway we observe
that:

u = 47.5 mph % q = 1525 cph (4-12)

which in terms of normalized variables (mean speed/free-speed and
flow/capacity) reads:

m = % ::%? p = .7625 (4-13)

and recalling relation (2-11) with ¢C = ,16, we see that in terms
of m and ¢ the requirement (4-13) may be written:

meF=>¢ = .122 (4-14)
Setting m % in relation (4-4) we obtain:
-a/4
¢(%> %—(1n2)l:1 - 7a - 3be ] (4-15)

Substituting for a from (4-7) and for b from (4-10) we obtain,
after some rearrangement,

- o/4
b (7_3[)= L (2 [an -1l (l-e )] (4-16)

A direct calculation shows that by taking:

a = 4 (4-17)

11



in (4-16) we obtain:

¢(%> = .122 | (4-18)

for the satisfaction of requirement (4-14).

Inserting the value (4-17) for o into equations (4-10) and
(4-11) yields the following values for a and b:

_5 4 1 N
a = 3 - x ln2, b=z (4-19)

and ¢ (m) takes the explicit form:

5 4 - 4<m‘l>
o(m) = WELm)ln(lmﬂ].-G--glngm- %me 2] (4-20)

for which a direct check will show that conditions (3-4) and (3-5)
are satisfied. Written in terms of the normalized variable p
(Definition (2-11)) relation (4-20) becomes

(-2
] ' -4 m-f
p(m) = - 6.25 [(l-m) 1n (1-m?Jk -<§ - 3 1n2>m - 1. ]

(4-21)

where we have used the fact that iL-= —%— = 6.25.
c .

The graph of relation (4-21) is illustrated in Figure 2. The
corresponding points from the curves of the llighway Capacity Manual.
(Figure 1) are also shown indicating how well the fitting has been
achieved.

Moreover from equations (2-5) and (4-20), we have

. = afn-1
1 5 4 1 ( 7)
A= - o [(1~m) In (1-m)|j1 '(j - 1n2>m - x€ (4-22)

The relation giving m in terms of A,

m = m(A) (4-23)

12
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implied by (4-22) can then be used with relation (2-12) to yield
p = 6.25 A m(A) (4-24)

describing the normalized flow-density relation.

The normalized relations, speed-flow (m-p), speed-density
(m-A) and flow-density (p-1A), arec shown graphically in Figurecs

2, 3, and 4, respectively.

14
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5, THE JAM WAVE PARAMETER

The speed at which disturbances are propagated in the traffic

stream -- the wave speed — is given by the local flow/density deriv-
ative, naunely,

- dq _ dé
c = a% = UO ax (5'1)

so that for the wave-speed/free-speed ratio we have

ool (5-2)

Moreover, noting that

d¢ _ d¢ dm _ d¢ /dA _
D" dn > dm/ dm (5-3)

we may substitute for the numerator from relation (4-5) and insert
the derivative of (4-22) for the denominator to obtain

_ 1
[1 + 1n(1-nﬂ]% - am - bme a(m 7)]

- ofm-L o ofn-l
+ [(1-m) 1n (lﬂlﬂ[? + be G(m 2) - abme a(m 2>}
1
1 1 ) “( '7)
ﬁ[l + r_ﬁ 1n(1—m)]|i1 - am - bme ]

1 - a(m-%) - a(m-l>
+ ﬁ[ﬁl-m) 1n (1-mﬂ a + be - oabme 2

Of particular interest are the values of the wave-speed at the

d¢ _
= - (5-4)

three pivotal points in the density range, namely, zero-density,
capacity, and jam density. Noting that A *-Oﬁ>m + 1, it is easily
checked that

Lim d¢ _ [1 + ln(l-ﬂﬂ]& - a - be"f] = -
A0 dx [1 + 1n(1-m)]ﬁ - a - be-z] ' o)

16



reflecting the well-known fact that in this density range disturb-
ances are propagated at the vehicle speed. For the capacity point
we have

d¢
o = 0
dxti, _

A=A,

so that disturbances tend to remain stationary, though the
stationarity is not very stable.

For the jam density region we note that A - 1:%>n1+ 0, so
that from relation (5-4) we have

lim d¢ _ 1
A+1 dx

=]
|
1
I\y—‘
1
uy—n
N
]
—
+
=l
~—
1
g
1
o]
éN
]
—_
0
+
(o
o
N

= _1 - I - 1 = - -
% : (;:327) = .27 (5-7)

where we have inserted the values (4-19) for a and b. The value
given by (5-7) indicates that the proposed formula implies

that the backward jam shock-wave speed is roughly one-quarter of
the free speed. While this value appears reasonable, it should be
tested against actual observations. 1In fact, this parameter, which
should be relatively easy to measure, appears to have been ignored
as a practical check on the theoretical formula.

Recalling that ¢ = ¢Cp, we have

dp 1 c C
= = — = 6,25 —
dx o, U, uy
so that
Lim dp _ Lim dp _
Ar0 IX S 6.25, sl IX C 1.67

for the slopes of the limiting tangents to the curve (Figure 4).

17
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